Video interview about Clinical Trial Risk Tool

Video interview about Clinical Trial Risk Tool

This month, I presented the Clinical Trial Risk Tool at the Plotly Dash in Action webinar. I was interviewed by Plotly’s Community Manager Adam Schroeder. You can watch the relevant part of the webinar below.

The Clinical Trial Risk Tool was one of four interactive apps presented as part of the webinar. The speakers at the webinar were:

Screenshot of Matteo Trachsel’s Thermoplan dashboard which calculates the carbon footprint of coffee machine usage.

Screenshot of Agah Karakuzu’s dashboard which allows neuroscientists to assess the reproducibility of T1 values across different sites and vendors where researchers used the same research protocol. (T1 is the time it takes water molecules in the brain to return to their original state following a magnetic pulse).

How to cite the Clinical Trial Risk Tool?

If you would like to cite the tool alone, you can cite:

Wood TA and McNair D. Clinical Trial Risk Tool: software application using natural language processing to identify the risk of trial uninformativeness. Gates Open Res 2023, 7:56 doi: 10.12688/gatesopenres.14416.1.

A BibTeX entry for LaTeX users is

@article{Wood_2023, doi = {10.12688/gatesopenres.14416.1}, url = {https://doi.org/10.12688%2Fgatesopenres.14416.1}, year = 2023, month = {apr}, publisher = {F1000 Research Ltd}, volume = {7}, pages = {56}, author = {Thomas A Wood and Douglas McNair}, title = {Clinical Trial Risk Tool: software application using natural language processing to identify the risk of trial uninformativeness}, journal = {Gates Open Research} }

Multi-arm & multi-stage clinical trials design tips

Multi-arm & multi-stage clinical trials design tips

Guest post by Safeer Khan, Lecturer at Department of Pharmaceutical Sciences, Government College University, Lahore, Pakistan Multi-Arm & Multi-Stage (MAMS) Clinical Trials Design Tips The design of clinical trials is increasingly challenged by the Rising Costs, limited availability of eligible patient populations, and the growing demand for timely therapeutic evaluation. Traditional parallel-group designs, which typically compare a single intervention to a control, are often insufficient to meet these pressures in terms of speed, efficiency, and resource utilization.

T-test sample size calculator for clinical trials

T-test sample size calculator for clinical trials

You can use the t-test when you want to compare the means (averages) of continuous data between two groups, such as blood pressure or maximum concentration of a drug in urine (Cmax). If you have data with a dichotomous outcome, you can use the Chi-Squared test instead - please try our Chi-Squared sample size calculator. The calculator below will calculate the minimum sample size for you. Your expected effect size d is the standardised effect size according to Cohen’s definition.

Chi-Squared sample size calculator for clinical trials

Chi-Squared sample size calculator for clinical trials

You can use the Chi-Squared test to analyse your trial data or A/B test data if you have two groups with a dichotomous outcome. For example, you have two arms in your trial: the placebo and the intervention arm, and your endpoint is either yes or no, such as “did the subject experience an adverse event during the trial”. The calculator below will calculate the minimum sample size for you. Your expected effect size w is the standardised effect size according to Cohen’s definition.