We have developed a machine learning and rule-based tool using natural language processing which allows a user to upload a trial protocol, and which categorises the protocol as high, medium or low risk of ending uninformatively. The tool is at https://clinicaltrialrisk.org/tool and is open-sourced on Github. You can read an explanation of how the tool works here, and a description of how we validated its accuracy here.
There are several indicators of high risk of uninformativeness which can be identified in a protocol, such as a lack of and or an inadequate statistical analysis plan, use of non-standard endpoints, or the use of cluster randomisation. One of the most common causes of a trial ending uninformatively is underpowering. Low-risk trials are often run by well-known institutions with external funding and an international or intercontinental array of sites. These indicators can be referred to as features or parameters.
This project is an initial Proof of Concept (POC) which to showcase what is possible with natural language processing, with a view to moving towards a more comprehensive main project which may identify a more complete set of cost, complexity, or uninformativeness risk factors.
The tool is designed with a feedback form so that inaccurate data extractions can be reported back to the developers.
In addition the MIT License means that you are free to add features or extend the scope of the tool.
We hope that researchers who are considering submitting a protocol of a trial to a prospective source of funding will be able to use the tool as a kind of checklist to ensure that their trial is designed to reduce risk and increase the prospects of being funded.
We have improved the Clinical Trial Risk Tool in the last 6 months, making it more user friendly and taking on board the feedback that we’ve received. We’ve improved the accuracy of the machine learning components too. The tool now outputs its key figures such as risk levels and estimated cost in easily readable cards, so you can see at a glance the key takeaways from your protocol: The risk factors are now organised into collapsible categories, so you can explore them easily without an information overload.
Guest post by Safeer Khan, Lecturer at Department of Pharmaceutical Sciences, Government College University, Lahore, Pakistan Introduction The success of a clinical trial is strongly dependent on the structure and coordination of the teams managing it. Given the high stakes and significant impact of every decision made during the trial, it is essential for each team member to collaborate efficiently in order to meet strict deadlines, comply with regulations, and ensure reliable results.
Guest post by Youssef Soliman, medical student at Assiut University and biostatistician Clinical trial protocols are detailed master-plans of a study – often 100–200 pages long – outlining objectives, design, procedures, eligibility and analysis. Reading them cover-to-cover can be daunting and time-consuming. Yet careful review is essential. Protocols are the “backbone” of good research, ensuring trials are safe for participants and scientifically valid [1]. Fortunately, there are systematic strategies to speed up review and keep it objective.