On 8 October, Thomas Wood of Fast Data Science presented the Clinical Trial Risk Tool, along with the Harmony project, at the AI and Deep Learning for Enterprise (AI|DL) meetup sponsored by Daemon. You can now watch the recording of the live stream on AI|DL’s YouTube channel below:
The Clinical Trial Risk Tool leverages natural language processing to identify risk factors in clinical trial protocols. The Clinical Trial Risk Tool is online at https://clinical.fastdatascience.com.
Artificial Intelligence and Deep Learning for Enterprise is a meetup group in London dedicated to talks from people in the industry using developments in AI for exciting real world applications.
We initially developed the Clinical Trial Risk Tool to identify risk factors in HIV and TB protocols. Version 2 is coming soon, which will also make cost predictions (i.e. predict the cost of running a trial in dollars), and which will also cover further disease areas, such as Enteric and diarrheal diseases, Influenza, Motor neurone disease, Multiple sclerosis, Neglected tropical diseases, Oncology, COVID, Cystic fibrosis, Malaria, and Polio.
The project has been funded by the Bill and Melinda Gates Foundation and we have published a technical paper in the journal Gates Open Research:
The software is under MIT License, meaning that it is open source, and can be freely used for other purposes, both commercial and non-commercial, with no restrictions attached. The source code is on Github at https://github.com/fastdatascience/clinical_trial_risk.
[Fast Data Science]](https://fastdatascience.com/) is a leading data science consultancy firm providing bespoke machine learning solutions for businesses of all sizes across the globe, with a concentration on the pharmaceutical and healthcare industries.
This post originally appeared on Fast Data Science’s blog on LinkedIn. Clinical trials are essential for medical advancement but are not without risk. Delays, budget overruns, and compliance issues can derail the most carefully planned studies. Proactive risk management is the key to ensuring patient safety, maintaining regulatory compliance, and achieving successful trial outcomes. In this article we’ll explore the key risks in clinical trials, how AI-powered tools like the Clinical Trial Risk Tool can help mitigate these risks, and practical strategies for ongoing risk monitoring.
This post originally appeared on Fast Data Science’s blog on LinkedIn. Discover how the Clinical Trial Risk Tool helps optimise clinical trial workflows with accurate risk and cost analysis. Save time and reduce costs. Why Workflow Efficiency Matters in Clinical Trials Running a clinical trial is a complex and expensive process. Delays, unexpected costs, and inefficiencies can waste time and money, affecting trial outcomes and patient care. As trials become more complicated, workflow management is more important than ever.
This post originally appeared on Fast Data Science’s blog on LinkedIn. In today’s ever-evolving healthcare landscape, technology is crucial to improving patient care, streamlining processes, and enhancing outcomes. Natural Language Processing (NLP) is one such technology that is revolutionising the way healthcare organisations operate. For instance, NLP has been used to analyse patient feedback and identify trends in satisfaction levels, leading to targeted improvements in service quality. In this article, we will explore the role of NLP in healthcare, its benefits, and potential applications.