On 8 October, Thomas Wood of Fast Data Science presented the Clinical Trial Risk Tool, along with the Harmony project, at the AI and Deep Learning for Enterprise (AI|DL) meetup sponsored by Daemon. You can now watch the recording of the live stream on AI|DL’s YouTube channel below:
The Clinical Trial Risk Tool leverages natural language processing to identify risk factors in clinical trial protocols. The Clinical Trial Risk Tool is online at https://clinical.fastdatascience.com.
Artificial Intelligence and Deep Learning for Enterprise is a meetup group in London dedicated to talks from people in the industry using developments in AI for exciting real world applications.
We initially developed the Clinical Trial Risk Tool to identify risk factors in HIV and TB protocols. Version 2 is coming soon, which will also make cost predictions (i.e. predict the cost of running a trial in dollars), and which will also cover further disease areas, such as Enteric and diarrheal diseases, Influenza, Motor neurone disease, Multiple sclerosis, Neglected tropical diseases, Oncology, COVID, Cystic fibrosis, Malaria, and Polio.
The project has been funded by the Bill and Melinda Gates Foundation and we have published a technical paper in the journal Gates Open Research:
The software is under MIT License, meaning that it is open source, and can be freely used for other purposes, both commercial and non-commercial, with no restrictions attached. The source code is on Github at https://github.com/fastdatascience/clinical_trial_risk.
[Fast Data Science]](https://fastdatascience.com/) is a leading data science consultancy firm providing bespoke machine learning solutions for businesses of all sizes across the globe, with a concentration on the pharmaceutical and healthcare industries.
Clinical trial designs vary considerably, impacting study execution, patient recruitment, endpoints, and treatment delivery. Here’s a brief summary of some common designs: First-In-Human (FIH) Studies These are the initial human trials for a new drug, procedure, or treatment, focusing primarily on safety. Cohort Studies These observational studies follow a group of individuals over an extended period to assess risk factors associated with developing specific conditions. Case-Control Studies These studies compare individuals with a particular disease or condition (cases) to similar individuals without the disease (controls) to identify potential risk factors.
This post originally appeared on Fast Data Science’s blog on LinkedIn. The Growing Role of AI in Clinical Trials Clinical trials are vital for advancing medicine, but managing them efficiently is a constant challenge. Traditional methods for assessing risks and estimating costs often miss the mark, leading to delays and unexpected expenses. This is where Artificial Intelligence (AI) and Natural Language Processing (NLP) come into play, offering smarter, data-driven solutions to streamline trial planning and management.
This post originally appeared on Fast Data Science’s blog on LinkedIn. Budgeting is one of the most critical steps when planning a clinical trial. Clinical trials are complex, multi-phase studies that require significant resources, and understanding the costs associated with each phase is crucial for an accurate clinical trial budget. In this post, we’ll explore the different phases of clinical trials and the key factors that influence their costs, providing insights into how to prepare a comprehensive budget that aligns with your trial’s needs.